Prediction of the Relative Free Energies of Drug Polymorphs Above Zero Kelvin

Blog details
2 min read
Share this:

Cryst. Growth Des. 2020, 20, 8, 5211–5224
Periodicals:Crystal Growth and Design
Author:Mingjun Yang et al.
Time:2020-07-01


Crystal structure prediction (CSP) calculations can reduce risk and improve efficiency during drug development. Traditionally, CSP calculations use lattice energies computed through density functional theory. While this approach is often successful in predicting the low energy structures, it neglects the crucial role of thermal effects on polymorph stabilities. In the present study, we develop a robust and efficient protocol for predicting the relative stability of polymorphs at different temperatures. The protocol is executed on a highly parallel cloud computing infrastructure to produce results at time scales useful for drug development timelines. We demonstrate this protocol on molecule XXIII from the sixth crystal structure prediction blind test. Our results predict that Form D is the most stable experimentally observed polymorph at ambient temperature and Form C is the most stable at low temperature consistent with experiments also conducted in the present study.

Your next success starts here

Recommended articles

Templated Nucleation of Clotrimazole and Ketoprofen on Polymer Substrates
Tale of Two Polymorphs: Investigating the Structural Differences and Dynamic Relationship between Nirmatrelvir Solid Forms (Paxlovid)
Cocrystal Synthesis through Crystal Structure Prediction
Effect of Polymer Additives on the Crystal Habit of Metformin HCl

XtalPi Newsletter